

International Math Battle Tournament

Bovec, 2026

Day 4

- Let ABC be a triangle. Let D and E be two points such that B, D, E and C lie on the same line in this order and $2DE = BC$. The lines perpendicular to BC through D and E intersect segments AB and AC at points P and Q , respectively. Let X be the point on the arc PAQ such that $XB = XC$.

Prove that the line bisecting XB and XC also bisects PQ .

- Find all integers $a > 1$ for which there exist infinitely many pairs of relatively prime positive integers (m, n) such that $m \mid a^n - 1$ and $n \mid a^m - 1$.
- Let $d \geq 2$ be a positive integer. Define the infinite sequence a_1, a_2, \dots by $a_1 = 1$ and

$$a_{n+1} = a_n^d + 1$$

for all positive integers n . Determine all pairs of positive integers (x, y) such that $a_x \mid a_y$.

- Find the smallest positive real number r with the following property: For every set $\{v_1, v_2, \dots, v_{2026}\}$ of 2026 unit vectors in \mathbb{R}^2 , a point P can be found in the plane, such that for each subset S of $\{1, 2, \dots, 2026\}$, the sum

$$\sum_{s \in S} v_s$$

lies in the disc with radius r , centered at P .

- Determine the largest real number C such that the inequality

$$\frac{x_1 + x_2^{20}}{x_1 + x_3^{26}} + \frac{x_2 + x_3^{20}}{x_2 + x_4^{26}} + \dots + \frac{x_{2026} + x_1^{20}}{x_{2026} + x_2^{26}} \geq C$$

holds for all real numbers $x_1, x_2, \dots, x_{2026} \in (0, 1)$.

- Let $n \geq 3$ be a positive integer. There are n boxes A_1, A_2, \dots, A_n , each box A_i containing a_i stones with $a_1 + a_2 + \dots + a_n = 3n$. A move consists of the following operation:

Choose a box, empty it, and distribute all the resulting stones among the n boxes (including the chosen box) such that for every two boxes the number of stones added to those boxes differ by at most 1.

For a distribution a_1, \dots, a_n , we define $f(a_1, \dots, a_n)$ as the least number of moves required to get all the stones into a single box. Let M be the maximum of $f(a_1, \dots, a_n)$ for all possible distributions a_1, \dots, a_n of $3n$ stones. Determine M and all distributions a_1, \dots, a_n for which $f(a_1, \dots, a_n) = M$.

7. Let ABC be an acute-angled triangle. Let D be the intersection of tangents at points B and C to the circumcircle of triangle ABC . Let M and N be the midpoints of sides AB and AC respectively. Let the circumcircles of triangles DBM and DCN intersect again at the point P , which lies inside the triangle ABC . The segment PD intersects the side BC at the point Q .

Prove that points M , N , P and Q lie on the same circle.

8. Let $n \geq 2$ be a positive integer. We are given $2n - 1$ (not necessarily distinct) subsets of the set $\{1, 2, \dots, n\}$, each containing 2 elements. Prove that one can choose n of these such that their union contains no more than $\frac{2}{3}n + 1$ elements.

Battle begins at 14:15.

Each problem is worth 12 points.

The use of electronic devices and literature is strictly prohibited.